聚类是数据分析中的一个根本问题。在差别私有聚类中,目标是识别$ k $群集中心,而不披露各个数据点的信息。尽管研究进展显着,但问题抵制了实际解决方案。在这项工作中,我们的目的是提供简单的可实现的差异私有聚类算法,当数据“简单”时,提供实用程序,例如,当簇之间存在显着的分离时。我们提出了一个框架,允许我们将非私有聚类算法应用于简单的实例,并私下结合结果。在高斯混合的某些情况下,我们能够改善样本复杂性界限,并获得$ k $ -means。我们与合成数据的实证评估补充了我们的理论分析。
translated by 谷歌翻译
Differentially private algorithms for common metric aggregation tasks, such as clustering or averaging, often have limited practicality due to their complexity or to the large number of data points that is required for accurate results. We propose a simple and practical tool, $\mathsf{FriendlyCore}$, that takes a set of points ${\cal D}$ from an unrestricted (pseudo) metric space as input. When ${\cal D}$ has effective diameter $r$, $\mathsf{FriendlyCore}$ returns a "stable" subset ${\cal C} \subseteq {\cal D}$ that includes all points, except possibly few outliers, and is {\em certified} to have diameter $r$. $\mathsf{FriendlyCore}$ can be used to preprocess the input before privately aggregating it, potentially simplifying the aggregation or boosting its accuracy. Surprisingly, $\mathsf{FriendlyCore}$ is light-weight with no dependence on the dimension. We empirically demonstrate its advantages in boosting the accuracy of mean estimation and clustering tasks such as $k$-means and $k$-GMM, outperforming tailored methods.
translated by 谷歌翻译